Knowledge Representation and Acquisition

Yankai Lin Natural Language Processing Lab linyk14@mails.tsinghua.edu.cn

Knowledge Graph

- Organize knowledge as a graph
 - node: entity
 - edge: relation
- Relation Facts

- represent as triples (head, relation, tail)

Typical Knowledge Graph

WordNet A lexical database for English

Outline

• Knowledge Representation

Knowledge Acquisition

Knowledge Representation

- Traditional Knowledge Representation
 - Symbol-based Triples (such as RDF format)
 - Cannot capture the semantic relatedness between entities
- Solution: distributed knowledge representation

TransE

 Regard Relations as Translations between Entities

• Objective: **h** + **r** = **t**

Entity Prediction

WALL-E _has_genre ?

Entity Prediction

WALL-E _has_genre

Animation **Computer animation** Comedy film Adventure film Science Fiction Fantasy Stop motion Satire Drama Connecting

Performance of Different Models

Freebase15K

Example of TransE

Entity	Tsinghua_University	A.CMilan
1	University_of_Victoria	Inter_Milan
2	StStephen's_College,_Delhi	Celtic_F.C.
3	University_of_Ottawa	FC_Barcelona
4	University_of_British_Columbia	Genoa_C.F.C.
5	Peking_University	Udinese_Calcio
6	Utrecht_University	Real_Madrid_C.F.
7	Dalhousie_University	FC_Bayern_Munich
8	Brasenose_College,_Oxford	Bolton_Wanderers_F.C.
9	Cardiff_University	Borussia_Dortmund
10	Memorial_University_of_Newfoundland	Hertha_BSC_Berlin

Example of TransE

Head	China	Barack_Obama
Relation	/location/location/adjoin	/education/education/institution
1	Japan	Harvard_College
2	Taiwan	Massachusetts_Institute_of_Technolo
۷	Ιαιννατι	gу
3	Israel	American_University
4	South_Korea	University_of_Michigan
5	Argentina	Columbia_University
6	France	Princeton_University
7	Philippines	Emory_University
8	Hungary	Vanderbilt_University
9	North_Korea	University_of_Notre_Dame
10	Hong_Kong	Texas_A&M_University

Remaining Challenges

Complex Relation Learning

Relational Path Modeling

Complex Relation Learning

- 1-to-n, n-to-1 and n-to-n relations
 - (USA, _president, Obama)
 - (USA, _president, Bush)

Complex Relation Learning

• Build relation-specific entity embeddings

Wang, et. al. (2014). Knowledge graph embedding by translating on hyperplanes. AAAI. Lin, et. al.(2015). Learning entity and relation embeddings for knowledge graph completion. AAAI.

Entity Prediction

Result of TransR

Data Sets		WN	[18			FB1	5K		
Matria		Mean Rank		Hits@10(%)		Mean Rank		Hits@10(%)	
Wieute	Raw	Filter	Raw	Filter	Raw	Filter	Raw	Filter	
Unstructured (Bordes et al. 2012)	315	304	35.3	38.2	1,074	979	4.5	6.3	
RESCAL (Nickel, Tresp, and Kriegel 2011)	1,180	1,163	37.2	52.8	828	683	28.4	44.1	
SE (Bordes et al. 2011)	1,011	985	68.5	80.5	273	162	28.8	39.8	
SME (linear) (Bordes et al. 2012)	545	533	65.1	74.1	274	154	30.7	40.8	
SME (bilinear) (Bordes et al. 2012)		509	54.7	61.3	284	158	31.3	41.3	
LFM (Jenatton et al. 2012)	469	456	71.4	81.6	283	164	26.0	33.1	
TransE (Bordes et al. 2013)	263	251	75.4	89.2	243	125	34.9	47.1	
TransH (unif) (Wang et al. 2014)	318	303	75.4	86.7	211	84	42.5	58.5	
TransH (bern) (Wang et al. 2014)	401	388	73.0	82.3	212	87	45.7	64.4	
TransR (unif)		219	78.3	91.7	226	78	43.8	65.5	
TransR (bern)		225	79.8	92.0	198	77	48.2	68.7	
CTransR (unif)	243	230	78.9	92.3	233	82	44	66.3	
CTransR (bern)	231	218	79.4	92.3	199	75	48.4	70.2	

Example of TransR

Head Entity	Titanic							
Relation		/film/film/genre						
Model	TransE	TransH	TransR					
1	War_film	Drama	Costume_drama					
2	Period_piece	Romance_Film	Drama					
3	Drama	Costume_drama	Romance_Film					
4	History	Film_adaptation	Period_piece					
5	Biography	Period_piece	Epic_film					
6	Film_adaptation	Adventure_Film	Adventure_Film					
7	Adventure_Film	LGBT	LGBT					
8	Action_Film	Existentialism	Film_adaptation					
9	Political_drama	Epic_film	Existentialism					
10	Costume_drama	War_film	War_film					

TransD

 Projection matrices related not only to relation but also head/tail entities

KG2E

- Consider the (un)certainties of entities and relations
- Models relations/entities with Gaussian Distribution.

He,et al. (2015) Learning to Represent Knowledge Graphs with Gaussian Embedding. CIKM

NTN

• NTN models KG with a Neural Tensor Network and represents entities via word vectors.

Socher, et al. (2013) Reasoning with neural tensor networks for knowledge base completion. NIPS.

Other Models

- TranSparse uses sparse projection matrices to deal with the issue of entities and relations are heterogeneous and unbanlanced
- Holographic Embeddings (Hole) uses the circular correlation to combine the expressive power of the tensor product with the efficiency and simplicity of TransE.
- **Complex Embeddings** employs eigenvalue decomposition model which makes use of complex valued embeddings.

Ji, et al. (2016) Knowledge Graph Completion with Adaptive Sparse Transfer Matrix. AAAI. Nichkel, et al. (2015) Holographic Embeddings of Knowledge Graphs. Arxiv. Trouillon, et al. (2016) Complex embeddings for simple link prediction. Arxir.

Remaining Challenges

Complex Relation Learning

Relational Path Modeling

Utilize Relational Path

Utilize Relational Path

Path Ranking Algorithm

Lao, et al. (2011). Random walk inference and learning in a large scale knowledge base. EMNLP.

PTransE: Path-based TransE

Lin, et al. (2015). Modeling Relation Paths for Representation Learning of Knowledge Bases. EMNLP.

PTransE: Path-based TransE

Entity Prediction

Matria	Mear	n Rank	Hits@10(%)		
wieure	Raw	Filter	Raw	Filter	
RESCAL	828	683	28.4	44.1	
SE	273	162	28.8	39.8	
SME (linear)	274	154	30.7	40.8	
SME (bilinear)	284	158	31.3	41.3	
LFM	283	164	26.0	33.1	
TransE	243	125	34.9	47.1	
TransH	212	87	45.7	64.4	
TransR	198	77	48.2	68.7	
TransE (Our)	205	63	47.9	70.2	
PTransE (ADD, 2-step)	200	54	51.8	83.4	
PTransE (MUL, 2-step)	216	67	47.4	77.7	
PTransE (RNN, 2-step)	242	92	50.6	82.2	
PTransE (ADD, 3-step)	207	58	51.4	84.6	

+35%

Relation Prediction

Matria	Mean	Rank	Hits@1 (%)		
IVICUIC	Raw	Filter	Raw	Filter	
TransE	2.8	2.5	65.1	84.3	
+Rev	2.6	2.3	67.1	86.7	
+Rev+Path	2.4	1.9	65.2	89.0	
PTransE (ADD, 2-step)	1.7	1.2	69.5	93.6	
-TransE	135.8	135.3	51.4	78.0	
-Path	2.0	1.6	69.7	89.0	
PTransE (MUL, 2-step)	2.5	2.0	66.3	89.0	
PTransE (RNN, 2-step)	1.9	1.4	68.3	93.2	
PTransE (ADD, 3-step)	1.8	1.4	68.5	94.0	

+10%

Example of PTransE

Head Entity	Barack_Obama					
Relation	/education/education	/institution				
Model	TransE	PTransE				
1	Harvard_College	Columbia_University				
2	Massachusetts_Institute_of_Technolo gy	Occidental_College				
3	American_University	Punahou_School				
4	University_of_Michigan	University_of_Chicago				
5	Columbia_University	Stanford_University				
6	Princeton_University	Princeton_University				
7	Emory_University	University_of_Pennsylvani a				
8	Vanderbilt_University	University_of_Virginia				
9	University_of_Notre_Dame	University_of_Michigan				
10	Texas_A&M_University	Yale_University				

Example of PTransE

Head Entity	Stanford_University			
Relation	/education/educational_ins	titution/students_graduates		
Model	TransE	PTransE		
1	Steven_Spielberg	Raymond_Burr		
2	Ron_Howard	Ted_Danson		
3	Stan_Lee	Delmer_Daves		
4	Barack_Obama	D.WMoffett		
5	Milton_Friedman	Gale_Anne_Hurd		
6	Walter_FParkes	Jack_Palance		
7	Michael_Cimino	Kal_Penn		
8	Gale_Anne_Hurd	Kurtwood_Smith		
9	Bryan_Singer	Alexander_Payne		
10	Aaron_Sorkin	Richard_DZanuck		

Other Challenges

- Utilize Multi-source Information
 - Textual Information
 - Visual Information
 - Type Information
- Consider Logic Rules
 - Implication
 - Inference

Outline

- Knowledge Representation
- Knowledge Acquisition

Relation Extraction

• Extract Relational Facts from plain texts

Remaining Challenge

Lack of Labeling Data

• Utilize Multi-lingual Data

Distant Supervised Relation Extraction

Wrong Label Issue

Sentence Encoder

Sentence-Level Selective Attention

Lin, et al. (2016). Neural Relation Extraction with Selective Attention over Instances. ACL.

Effect of Selective Attention

Effect of Selective Attention

Zeng, et al. (2015). Distant Supervision for Relation Extraction via Piecewise Convolutional Neural Networks. EMNLP.

Effect of Sentence Number

- Setting
 - One
 - Two
 - -AII

Setting		0	ne			Т	VO			A	.11	
P@N(%)	100	200	300	Ave	100	200	300	Ave	100	200	300	Ave
CNN+One	68.0	60.7	53.8	60.9	70.0	62.7	55.8	62.9	67.0	64.7	58.1	63.4
+Two	75.0	67.2	58.8	67.1	69.0	63.2	60.5	64.0	64.0	60.2	60.1	60.4
+All	76.0	65.2	60.8	67.4	76.0	65.7	62.1	68.0	76.0	68.6	59.8	68.2
PCNN+One	73.0	64.8	56.8	65.0	70.0	67.2	63.1	66.9	72.0	69.7	64.1	68.7
+Two	71.0	63.7	57.8	64.3	73.0	65.2	62.1	66.9	73.0	66.7	62.8	67.6
+All	73.0	69.2	60.8	67.8	77.0	71.6	66.1	71.6	76.0	73.1	67.4	72.2

Case Study

Relation	employer of
Bad	When Howard Stern was preparing to take his talk show to Sirius Satellite Radio, following his former boss, Mel Karmazin, Mr. Hollander argued that
Good	Mel Karmazin, the chief executive of Sirius Satellite Radio, made a lot of phone calls
Relation	place_of_birth
Bad	Ernst Haefliger, a Swiss tenor who roles, died on Saturday in Davos, Switzerland, where he maintained a second home
Good	Ernst Haefliger was born in Davos on July 6, 1919, and studied at the Wettinger Seminary

Remaining Challenge

Lack of Labeling Data

Utilize Multi-lingual Data

Multi-lingual Relation Extraction

 Only consider mono-lingual data → People speaking different languages also share similar knowledge

Lin, et al. (2017). Neural Relation Extraction with Multi-lingual Attention. ACL.

Utilize Multi-lingual Data

- Mono-lingual RE for each languages
- Multi-lingual RE

Consistency

- Half of Chinese and English sentences are longer than 20 words
- Relation: City of
 - New York is a city in the northeastern United States.
 - <mark>纽约</mark>位于美国纽约州东南部大西洋沿岸,<mark>是美国</mark>第一大 城市及第一大港.
 - 纽约是美国人口最多的城市.
- Advantage: patterns expressing relations consist among languages

Complementarity

- Unique relational facts
 - -42.2% in English data
 - -41.6% in Chinese data
- The number of sentences expressing relational facts varies a lot in half of relations

 Advantage: texts in different languages can be complementary to each other

Methodology

Sentence Encoder

Multi-lingual Attention

Relation extractor

Multi-lingual Attention

- Mono-lingual Attention
- Cross-lingual Attention

Multi-lingual Attention

- Mono-lingual Attention
- Cross-lingual Attention

Relation Extractor

Mono-lingual

Global relation matrix

Relation Extractor

• Multi-lingual

Language specific relation matrix

Dataset

• Align between Wikidata and NYT

Data	aSet	#Rel	#Sent	#Fact
English	Train	1 - 6	1,022,23 9	47,638
	Valid	176	80,191	2,192
	Test		162,018	4,326
Chinese	Train		940,595	42,526
	Valid	176	82,699	2,192
	Test		167,224	4,326

Effectiveness of Consistency

Effectiveness of Consistency

CNN +Zh	CNN +En	MNR E	Sentence
	Medium	Low	Barzun is a commune in the Pyrénées-Atlantiques department in the Nouvelle-Aquitaine region of south-western France .
	Medium	High	Barzun was born in Créteil, France
Medium		Low	作为从 法国 移民到美国来的顶尖知识分子,巴尔 赞与莱昂内尔·特里林、德怀特·麦克唐纳等人一 道,在冷战时期积极参与美国的公共知识生活…
Medium		High	巴尔赞于1907年出生于 法国 一个知识分子家庭, 1920年赴美。

Effectiveness of Complementarity

Effectiveness of Complementarity

Relation	\#Sent- En	\#Sent- Zh	CNN- En	CNN- Zh	MNRE- En	MNRE- Zh
Contains	993	6,984	17.95	69.87	73.72	75.00
HeadquartersLocat ion	1,949	210	43.04	0	41.77	50.63
Father	1,833	983	64.71	77.12	86.27	83.01
CountryOfCitizensh ip	25,322	15,805	95.22	93.23	98.41	98.21

Comparison of Relation Matrix

Other Challenges

One(Zero)-shot Relation Extraction

Open Information Extraction

Utilize Document Information

Open Source Tool

- Knowledge Representation
 - https://github.com/thunlp/KB2E
 - <u>https://github.com/thunlp/Fast-TransX</u>
 - <u>https://github.com/thunlp/TensorFlow-TransX</u>
- Knowledge Acquisition
 - <u>https://github.com/thunlp/NRE</u>
 - <u>https://github.com/thunlp/TensorFlow-NRE</u>
 - https://github.com/thunlp/MNRE

Thanks